Optimising hadronic collider simulations using amplitude neural networks
نویسندگان
چکیده
Precision phenomenological studies of high-multiplicity scattering processes at collider experiments present a substantial theoretical challenge and are vitally important ingredients in experimental measurements. Machine learning technology has the potential to dramatically optimise simulations for complicated final states. We investigate use neural networks approximate matrix elements, studying case loop-induced diphoton production through gluon fusion. train network models on one-loop amplitudes from NJet C++ library interface them with Sherpa Monte Carlo event generator provide element within realistic hadronic simulation. Computing some standard observables comparing conventional techniques, we find excellent agreement distributions reduced total simulation time by factor thirty.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Optimising the topology of complex neural networks
In this paper, we study instances of complex neural networks, i.e. neural networks with complex topologies. We use Self-Organizing Map neural networks whose neighbourhood relationships are defined by a complex network, to classify handwritten digits. We show that topology has a small impact on performance and robustness to neuron failures, at least at long learning times. Performance may howeve...
متن کاملUsing neural networks to predict road roughness
When a vehicle travels on a road, different parts of vehicle vibrate because of road roughness. This paper proposes a method to predict road roughness based on vertical acceleration using neural networks. To this end, first, the suspension system and road roughness are expressed mathematically. Then, the suspension system model will identified using neural networks. The results of this step sho...
متن کاملOptimising memory usage in n-tuple neural networks
The use of n-tuple or weightless neural networks as pattern recognition devices is well known (Aleksander and Stonham, 1979). They have some significant advantages over the more common and biologically plausible networks, such as multi-layer perceptrons; for example, n-tuple networks have been used for a variety of tasks, the most popular being real-time pattern recognition, and they can be imp...
متن کاملA Real-Time Tracker for Hadronic Collider Experiments
In this paper we propose highly parallel dedicated processors, able to provide precise on-line track reconstruction for future hadronic collider experiments. The processors, organized in a 2-level pipelined architecture, execute very fast algorithms based on the use of a large bank of pre-stored patterns of trajectory points. An associative memory implements the first stage by recognizing track...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2022
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/1742-6596/2438/1/012149